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ABSTRACT

Online video stabilizaton is increasingly needed for real-time
applications such as live streaming, drone remote control, and
video communication. We propose a multi-scale convolu-
tional neural network (PixStabNet) which stabilizes video in
real time without using future frames. Instead of calculating a
global homography or multiple homographies, we estimate a
pixel-based warping map to make the transformation of each
pixel to achieve more precise modelling. In addition, we
propose well-designed loss functions along with a two-stage
training scheme to enhance network robustness. The quantita-
tive result shows that our method outperforms other learning-
based online methods in terms of stability with excellent ge-
ometric and temporal consistency. Moreover, to the best of
our knowledge, the proposed algorithm is the most efficient
approach for video stabilization. The models and results are
available at: https://yu-ta-chen.github.io/PixStabNet.

Index Terms— Video Stabilization, Multi-Scale Archi-
tecture, Pixel-Based Warping, Real-Time Processing

1. INTRODUCTION

Video captured with hand-held cameras usually contains un-
desirable shaky content, making it difficult to watch. To
remove jitters and generate stable video that can be viewed
comfortably, many software video stabilization alogrithms
have been proposed. Offline methods [1, 2, 3, 4] are de-
signed to stabilize videos that have been fully recorded. It
usually requires a considerable amount of time to achieve
an optimal result. Online methods [5, 6, 7, 8] are designed
to stabilize videos in real-time without using future frames.
Although there are hardware solutions such as Optical Image
Stabilization (OIS) and Electronic Image Stabilization (EIS),
they might not be available or reliable on low-end devices.

Recently, with advances in deep learning, convolutional
neural networks (CNNs) have been widely used in computer
vision tasks. To use CNN to stabilize a video in real time, a
pre-trained network is necessary. StabNet, the pioneer work
proposed by Wang et al. [6] predicts a set of mesh-grid trans-
formations. Xu et al. [9] use spatial transformer networks
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Fig. 1. Pipeline of proposed method.

(STNs) [10] to predict affine transformations. However, these
two methods do not account for depth variation because of
the transformations they use. Besides, they are not robust
since they use historical ground-truth frames as training in-
put but historical stabilized frames as testing input, which
can result in severely distorted and tilted output videos. PW-
StableNet [7] consider depth variation by generating pixel-
based warping maps instead, which however incurs a delay of
at least 15 frames due to the use of 15 future frames as net-
work input. To solve these problems, in this work, we propose
a novel deep learning approach for online video stabilization.

The pipeline of our method is shown in Fig. 1. First,
we propose a multi-scale CNN that directly predicts trans-
formations for each incoming unstable frame. This multi-
scale approach resembles a coarse-to-fine optimization strat-
egy. Second, the proposed network is an encoder-decoder ar-
chitecture which estimates pixel-based warping maps to sta-
bilize frames. We train our network on a public dataset with
well-designed loss functions. Moreover, a two-stage training
scheme is proposed to enhance the robustness of our network.

We evaluate our approach on the NUS dataset [1]. Exper-
imental results demonstrate that the proposed model produce
more stable video than other state-of-the art online methods.
Moreover, the main advantage of our approach is that it runs
on an NVIDIA RTX 2080Ti graphics card at a real-time speed
of 54.6 FPS, which is the most efficient approach for software
video stabilization.

2. RELATED WORK

In this section, we briefly complement some relevant works
on video stabilization frameworks. We do not discuss tradi-
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tional offline methods [1, 3, 11, 12] since these method rely
on estimating and smoothing camera trajectory via non-linear
optimization, which is too slow for real-time applications.
In recent years, many offline stabilization methods based on
deep learning have been proposed. Yu and Ramamoorthi [2]
treat the CNN as an optimizer and propose objective functions
based on optical flow to optimize input videos. They also pro-
posed inferring per-pixel warping fields from the optical flow
fields of the input video [13]. However, the pre-stabilization
stage in their framwork, which requires either KLT [14] or
SURF [15] for feature tracking, is time-consuming. Further-
more, learning-based optical-flow estimation such as standard
FlowNet2 [16] takes 123 ms per frame, making it impossible
for real-time performance.

Online video stabilization is difficult to implement as it
must be executed real-time. Therefore, there are few tra-
ditional online video stabilization methods. The pioneer
work [8] applies low-pass filters to smooth model parame-
ters. Liu et al. [5] place a regular 2D mesh on the video frame
to yield a motion vector at each vertex. As for learning-
based methods, as mentioned in previous section, such as
StabNet [6], predicts a mesh-based transformation to warp
unstable frames into stable frames. Although some of these
methods show strong and efficient results, they do not solve
errors caused by depth variation because they only esti-
mate a global homography or several homographies based on
meshes to warp shaky frames. To address this problem, PW-
StableNet [7] estimates a pixel-based warping map. However,
it requires 15 future frames as input, resulting in a fixed-delay.

3. PROPOSED METHOD

We propose an encoder-decoder architecture to generate
pixel-based warping maps instead of one global homogra-
phy, or mesh-based transformations with multiple homogra-
phies to stabilize an unstable video. To process an unsta-
ble frame It, the input of our network is concatenated by
It and a sequence of consecutive historical stable frames
St =< st−ω, st−ω+1, . . . , st−1 > for time-stamp t and win-
dow size w. The output of the network is a warping map Tt
with the same size as It containing channels T x

t and T y
t . For

each pixel (x′, y′) of the stabilized frame Ît, the correspond-
ing pixel (x, y) on It is obtained from T x

t and T y
t .

3.1. Multi-Scale Approach

As shown in Fig. 2, we use a Siamese network, which has
two branches that share the same parameters to enhance the
temporal consistency of successive stabilized frames Ît−1 =
Tt−1(It−1) and Ît = Tt(It) for training. For testing, only
one branch is needed to stabilize a video. The input consists
of the unstable current frame It and a sequence of consecu-
tive historical stable frames St. Inspired by Nah et al. [17], we
adopt a coarse-to-fine optimization strategy. Each branch is a

Fig. 2. Proposed multi-scale network approach. I is the frame
to be stabilized, S is the sequence of consecutive historical
stable frames, T is the warping map, and ◦ is the warping
map conbination operator.

multi-scale architecture, and the input is resized to three res-
olution stacks (Sd

t , I
d
t ), where d ∈ {0, 1, 2} is the resolution

index, and larger numbers represent higher resolutions. The
network starts off at the coarsest level to estimate rough trans-
formations. To deliver coarser level output to finer levels, we
use the warping map predicted by the coarser level network
to pre-stabilize the finer level unstable frame before feeding
into the network, after which the network processes the finer
level stack for further optimization. Finally, we combine the
warping maps of each level to yield the final warping map Tt.

3.2. Network Architecture

The details of our network are shown in Fig. 3. The network
is similar to U-Net [18], which uses an encoder-decoder ar-
chitecture. The encoder is composed of multiple convolution
layers for feature extraction, and the decoder is composed
of multiple upconvolution layers and convolution layers for
pixel-wise motion prediction. Feature maps of the same chan-
nel and same size in the encoder and the decoder are con-
nected through skip-connections. Moreover, we add an addi-
tional STN module to the last layer of the encoder to predict a
warping map F0. The last layer of the decoder is used to gen-
erate a pixel-based warping map F1 to fine-tune the motion
of each pixel. The first two scales only use F0 to estimate
the warping map T 0

t and T 1
t to move unstable frames to an

approximate location in 2D space, and the warping map of
the last scale T 2

t is combined with F0 and F1 to generate a
per-pixel warping field.

3.3. Loss Function

The loss function consists of three terms: stability loss Lstab,
distortion-reducing loss Ldr, and temporal loss Ltemp. We
calculate the loss for each scale d and define the total loss
function as,

L =
∑

d∈{0,1,2}

2dLd (1)



Fig. 3. Proposed convolution neural network architecture

Ld = γ Ltemp +
∑

k∈{t−1,t}

αLstab + β Ldr (2)

For each scale d, the input of each term is the frame or warp-
ing map in the corresponding scale.

3.3.1. Stability Loss.

The stability loss is used to drive the stabilized frame to the
ground-truth stable frames. It is defined as combination of
multi-scale photometric loss Lphoto , modified from [19] un-
der the inspiration of [20], and perceptual loss LV GG in [21].

Lstab(Ît, Ĩt) = w0 Lphoto(Ît, Ĩt) + LVGG(Ît, Ĩt), (3)

In photometric loss, we merge mean absolute error (MAE)
and structural similarity (SSIM) to evaluate how the stabi-
lized frame Ît aligns with the ground-truth stable frame Ĩt.
This, however, does not work if there are many pixels in the
low-texture region or that are far from the ground truth. To
account for this, we shrink Ît and Ĩt to the same size as the
three resolutions to compute the gradients from larger spatial
regions. Thus, the photometric loss is formulated as,

Lphoto(Ît, Ĩt) =

2∑
r=0

λ0|Îrt − Ĩrt |+ λ1DSSIM(Îrt , Ĩ
r
t ) (4)

Since pixel-wise loss functions do not capture perceptual dif-
ferences such as high texture. Therefore, we use perceptual
loss LVGG , for which we compute the mean squared error
(MSE) of Ît and Ĩt in the feature spaces of VGG16 [21].

LVGG(Ît, Ĩt) = MSE
(

VGG16(Ît),VGG16(Ĩt)
)

(5)

3.3.2. Distortion-Reducing Loss

Since the pixel-based warping map can result in severe dis-
tortion in the stabilized frame, distortion-reducing loss is pro-
posed to prevent visual artifacts. The loss constrains the per-
pixel warping field to approximate a linear warping field. We
first downscale the warping map Tt to 16× 16 to remove the

noise, and then upscale it to its original size, after which we
align Tt to the denoising warping map T ′. We define the loss
function as

Ldr (T
′
t , Tt) = ‖T ′t − Tt‖ (6)

Note that only the finest level in our multi-scale approach gen-
erates a pixel-based warping map, Ldr places the constraint
on the maximum resolution warping map T 2

t .

3.3.3. Temporal Loss

To ensure temporal smoothness in adjacent stabilized frames,
we utilize a temporal loss function to retain low-frequency
motion in the input video. At each time t, It−1 and It are fed
to the network, generating two successive stabilized frames,
Ît−1 and Ît. We define the temporal loss Ltemp as the pho-
tometric error between Ît and ω(Ît−1), where ω(·) is a func-
tion that warps the stable frame Ît−1 to Ît according to pre-
computed optical flow estimated by FlowNet2 [16].

Ltemp = w0 Lphoto

(
Ît, ω(Ît−1)

)
(7)

3.4. Training

The model is trained on the DeepStab dataset [6], which con-
tains 61 pairs of synchronized unstable and stable videos. We
split the videos into 45 training pairs, 8 validation pairs, and
8 testing pairs.

3.4.1. Two-stage Training Scheme

Video artifacts occur in methods [6, 9] which use historical
stable frames as input. These approaches only stack as train-
ing inputs ground-truth stable frames which are well-shaped
and have smooth camera trajectories. However, as no ground-
truth frames are available during testing, inputs are replaced
by historical stabilized frames. The resultant differences in
quality between training and testing input can lead to severe
distortion and incorrect tilt in the output video. An example
of these problems is shown in Fig. 4.

To solve this problem, we propose a two-stage training
approach. In the first stage, we take historical ground-truth
frames as training input, which allows the network to con-
verge quickly. Also, we exert some black borders by a ran-
domly sampled homography on the historical ground-truth
frames. In the second stage, we replace the historical ground-
truth frames with the stabilized frames to simulate the test
situation, contributing to more robust stabilization results.

3.4.2. Implementation Details

For pre-processing, we convert the frames to grayscale im-
ages and normalize the pixel values to between -1 and 1 be-
fore feeding them to the network. We define the scale levels
of the proposed multi-scale approach: 64 × 64, 128 × 128,



Fig. 4. Stabilization w/o two-stage training scheme. The out-
put video tilt increasingly due to propogation of uncertainty
if the network is trained merely on ground-truth.

and 256× 256, corresponding to resolution index 0, 1, and 2,
respectively. We used ADAM for optimization with β1 = 0.9
and β2 = 0.999. The hyper-parameters are α = 200, β =
0.1, γ = 200, λ0 = 0.15, and λ1 = 0.85. w0 is the reciprocal
of number of pixels of the input frame. In the two-stage train-
ing strategy, the network was trained for 10 epochs in the first
stage and 30 epochs in the second stage. The initial learning
rate was set to 2 × 10−5 and divided by 10 every 10 epochs
starting from the second stage. During the training process,
considering that most videos play at 30 FPS, we set the length
of historical stable frames w to 30. In testing, we repeated the
first frame w times and placed these at the head of the video.

4. EXPERIMENTS

We compare the proposed approach (PixStabNet) with sev-
eral state-of-the-art learning-based online stabilization alo-
gorithms, including StabNet [6], and PWStableNet [7], on
NUS dataset [1]. It contains six categories, a total of 144 col-
lected videos. The experiments were conducted on an Intel
i7-8700 CPU and an NVIDIA RTX 2080Ti graphics card.

The quantitative evaluation, with metric modified from
[1], and runtime comparison are shown in Table 1. We use the
non-cropping ratio, the non-distortion value, and the stability
score to evaluate stabilization methods. The non-cropping ra-
tio (C) evaluates the remaining area after processing. For each
stabilized frame st, a homography Ht is first estimated from
st to the unstable frame ut, after which Ht projects st to ut.
The non-cropping ratio is then defined as the ratio of the re-
maining area in the stabilized frame Ht(st) between the area
of the unstable frame ut. The non-distortion value (D) mea-
sures the degree of stabilized frame distortion. At each time t,
we estimate a homography as in non-cropping ratio. The dis-
tortion is arised from anisotropic scaling of Ht, which can be
extracted from SVD decomposition ofHt. The stability score
(S) is computed as the average signal-to-noise ratio (SNR) of

Category Metric StabNet PWStableNet PixStabNet

Regular
C 0.54 0.78 0.61
D 0.82 0.97 0.93
S 13.85 10.68 13.72

Parallax
C 0.45 0.76 0.51
D 0.71 0.93 0.90
S 15.07 12.30 14.92

Crowd
C 0.41 0.77 0.43
D 0.65 0.94 0.88
S 17.58 16.24 17.95

Running
C 0.41 0.68 0.45
D 0.77 0.92 0.92
S 12.88 11.03 13.11

Quick
Rotation

C 0.39 0.75 0.44
D 0.67 0.91 0.89
S 18.13 18.16 18.82

Zooming
C 0.47 0.79 0.50
D 0.71 0.93 0.87
S 17.25 15.02 17.54

Runtime (FPS) 8.5 42.4 54.6

Table 1. Quantitative and runtime comparison (*PW-
StableNet is semi-online with 15 frames fixed delay.)

the entire sequence. We first estimate the optical flow [22] be-
tween successive frames, and then divide the flow maps into
4 × 4 grids and average each grid to obtain the 2D local mo-
tions, which are converted into two 1D temporal signals for
frequency domain analysis. The lowest 5% of the frequency
components are taken as the signal, and the rest are treated as
the noise (the DC component is excluded).

The result shows that our network produces more stable
and less distorted results than StabNet. Although the videos
produced by PWStableNet are less distorted, they still show
severe shaking. Morever, the proposed method is the fastest
online method which do not use any future frame. Thus, we
conclude that the proposed approach produces quantitatively
better results than other learning-based online methods.

5. CONCLUSIONS

We propose a learning-based method to solve problems with
online video stabilization. The contributions of our work are
threefold. First, we utilize a multi-scale network architecture
to generalize spatially consistent camera motion characteris-
tics. Second, it is a true online method that can operate in
real-time (54.6 FPS) without any use of future frames. Last
but not least, we propose versatile loss functions with two-
stage training scheme to obtain high geometric and tempo-
ral consistency. Experimental results show that the proposed
algorithm surpasses other learning-based online methods in
terms of stability with high shape preservation. Moreover,
the proposed approach has the highest processing speed of all
state-of-the-art methods.
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