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Abstract—Tai Chi Chuan (TCC) is a well-known Chinese
martial art that promotes health. In addition to learning TCC
from a coach in a classroom setting, learners usually use books
or videos to practice on their own. However, since turning is
a frequent movement in TCC, learners cannot watch a tutorial
and practice TCC at the same time. Furthermore, it is difficult
for users to determine whether their postures are correct. We
propose an augmented reality TCC practice tool with pose
evaluation to help people practice TCC on their own. The
tool consists of an optical see-through head-mounted display,
external cameras, digital compasses, and a server. Users learn
TCC movements from surrounding virtual coaches in augmented
reality and determine whether their postures are correct via an
evaluation module. Study results show that the proposed tool
provides a helpful learning environment for TCC and that the
pose estimation and evaluation are robust and reliable.

Index Terms—Tai-Chi-Chuan, Sport Learning, Pose Estima-
tion, Augmented Reality, Human Computer Interaction

I. INTRODUCTION

Many studies show that Tai Chi Chuan (TCC) improves
health both physically and mentally [1]–[5]. Usually, TCC
is learned from a coach in a class setting. As coaches are
not available outside of class time, people typically consult
instruction books or watch demonstration videos to practice
TCC on their own.

Nevertheless, there are several drawbacks to such books and
videos. First, people generally see the coach’s posture from a
specific, fixed point of view; they cannot change to whatever
point of view would be better. Second, as some TCC move-
ments involve turning the head, checking one’s posture in such
a case obliges the student to stop performing the movement
before consulting the instruction book or demonstration video,
which interrupts their progress. Last, it is difficult for users to
determine whether their postures and movements are correct.
Although looking into a mirror is a solution, few users have the
luxury of a dance classroom environment. Thus the perspective
or occlusion problem still exists.

To help people practice TCC on their own, we propose
a TCC practice system consisting of a learning module and
an evaluation module. In the learning module, users wear an
optical see-through head-mounted display (OST-HMD) and
see virtual coaches surround them in augmented reality (AR).
Fig. 1 shows the architecture of the proposed system. AR and
the HMD allow the user to simultaneously observe coaches

Fig. 1. Scenario drawing and the system architecture of the proposed
augmented Tai-Chi Chuan practicing tool

from multiple perspectives and practice the movement without
distractions or interruptions. The evaluation module helps
users to determine whether their movements or postures are
correct. With digital compasses attached to the feet and exter-
nal camera(s) continuously monitoring users’ feet orientation
and capturing imagery, we reconstruct the user skeleton at the
server and compare it with the correct movements to evaluate
their performance. We summarize the key functionalities of
this work:
• Virtual Coach: The user inspects and imitates coach

movements from multiple perspectives to practice TCC
in augmented reality. (Section III.A)

• Movement Learning: To aid users when practicing con-
tinuous movements, we label all key postures in every
movement. (Section III.B)

• Pose Estimation: We analyze color images from the
camera and digital compass measurements to reconstruct
the 3D human pose with feet orientation. (Section IV.A)

• Pose Evaluation: To highlight differences between the
user’s pose and that of the coach, we align and compare
the postures, output the corresponding scores, and offer
video for review. (Section IV.B)

The contributions of this work are threefold. First and
foremost, we propose a versatile augmented TCC learning
module. We create virtual coach of Yang-Style TCC which
surrounds the user in AR based on real TCC coach’s move-
ment. Secondly, we propose a pose evaluation module to help
user improve their practice. We design a novel grading rubrics
along with review interface to remind users of noteworthy
actions. Last but not least, from our user experience study, we



investigate user preference on the layout of virtual coaches and
interaction method in AR system, which serve as reference for
subsequent development of AR sport learning system.

II. RELATED WORK

A. Sport Learning Systems

When learning or practicing sports at home, a flat dis-
play such as a television or projector is the most common
multimedia. MotionMA [6] and YouMove [7] use Kinect to
analyze and model experts’ motions. Comparison to student
movement yields feedback information that is shown on the
screen. Physio@Home [8] uses a wearable device and two
cameras that view the user from different angles. Via guidance
information in front of a TV, the system decreases the number
of mistakes when physiotherapy patients do their exercises
through observation from different angles. SleeveAR [9] also
shows the potential of projector-based guiding systems in guid-
ing user hand movements. Recent years have seen increased
use of OST-HMDs. Stylo-Handifact [10] consists of a haptic
device attached to the forearm and a visualization of a virtual
hand, which are combined to provide visuo-haptic feedback
for posture training applications. Ikeda et al. [11] and Yeo et
al. [12] use OST-HMDs for self-paced sport training to help
the user imitate the expert’s motions.

B. Tai Chi Chuan Learning Systems

Chen et al. [13] use pressure-sensing insoles for learning
TCC. They use a smartphone or tablet to show visual feedback
on the weight distribution of the user’s feet as well as the
virtual coach’s feet. “Tai Chi in the Clouds” [14] uses a micro
unmanned aerial vehicle (UAV) as “clouds” to lead or follow
hand movements, providing live feedback on smoothness of
movement via LEDs. Chua et al. [15] propose a training
system for TCC based on a VR headset to guide body
movements using virtual coaches. Users watch their body
information in the virtual world via an avatar reconstructed
from their skeleton animation. Whereas the system proposed
by Iwaanaguchi et al. [16] is similar to that of [15], but their
system only contains the virtual coach’s movements.

In previous work [17], [18] we use an OST-HMD to learn
TCC. Users easily evaluate their movements in a virtual mirror
shown on the OST-HMD when practicing TCC. We also
use wearable devices to detect wrist motion [19] and feet
pressure [20], [21], which helps users to modify their body
pose more effectively.

C. Pose Estimation and Evaluation

OpenPose [22] is a well-known real-time pose estimation
method to detect multiple people’s 2D poses from a single
RGB image. It is a bottom-up method, which means that it
detect joints first and then connects the joints to form the
skeleton of the human body. Lifting from the Deep [23] is a
deep architecture for detecting 2D and 3D pose from a single
RGB image. It uses a four-stage architecture which optimizes
2D and 3D poses together to yield a refined 2D and 3D pose
after a few iterations.

Fig. 2. Flow of user interaction for learning module

To evaluate pose correctness, we measure the pose similarity
between the user and the coach. This has been measured by
joint positions’ Euclidean distance [7], [24], or in terms of
the base of joint angles [6], [25]. Measuring similarity based
on joint angles rather than joint positions removes the need
for calibration procedures to eliminate the error caused by
differences between users’ body shapes.

III. LEARNING MODULE

In this section, we introduce the augmented reality TCC
learning module of the proposed system. Fig. 2 shows the
interaction flow of the learning module. The only hardware
is the Microsoft HoloLens (first generation), a mixed-reality
head-mounted display running the Windows Mixed Reality
platform, which is equipped with multiple sensors, including
inertial measurement units (IMUs), environment understanding
cameras, a depth camera, and so on, which contribute to its
robust environment localization and mapping.

A. Virtual Coach

(a) Movement recording (b) Animation creation

Fig. 3. Virtual coach creation

1) Virtual Coach Creation: There are many styles of TCC.
In this work, we invited a TCC master to demonstrate standard
Yang-Style TCC. His movements were recorded by a Vicon
motion capture system consisting of 54 Vicon T160 cameras to
form a capture volume of 15m (L) × 5m (W) × 3m (H). The
movements recorded from the TCC master were first converted
to the animation file and then imported into Unity 3D as the



Fig. 4. Virtual coach layout in AR

animation of the virtual coaches in our system. Fig. 3 shows
the creation of the virtual coach.

2) Virtual Coach Layout: The user is surrounded by eight
(this is customizable) virtual coaches in the augmented en-
vironment, as shown in Fig. 4. Users observe the motion not
only of coaches in front of them but also of the coaches behind
them. This solves the fixed perspective and occlusion prob-
lems. In addition, twelve numbers surround the user. These
numbers are the direction prompts showing the clock position.
Each movement starts from the twelve o’clock direction. The
virtual coaches’ orientations and the twelve numbers are set
to the orientation of the user’s head when the user enters
the learning module, and can be changed by the user. While
practicing, the relative distance between the virtual coaches
and the user remains constant. However, since the horizontal
and vertical field of view (FOV) of Microsoft HoloLens are
restricted to 30 and 17.5 degrees respectively, we shrink the
size of the virtual coaches to fit the FOV, which makes it
slightly less realistic.

3) Configuration Setting: Here the user configures the
environment. Users can adjust the demonstration speed and
the mounting height of the virtual coach. The default (normal)
speed is as fast as the TCC master. Users can adjust the speed
according to their learning status. As for height adjustment,
since user head shapes differ, the viewing angle varies slightly
when wearing the HMD. Thus, the preset height of the virtual
coach may not apply to all users. Users use the up and down
buttons to adjust the height of the virtual coach positions.

B. Key Functionalities

There are two primary learning modes in the proposed
learning module: single movement learning and sequential
movement learning. Specifically in single movement learning,
there are two playing modes: continous playing mode and
pause-at-key-posture (PKP) playing mode. User can choose
the appropriate mode according to their own learning status.

1) Single Movement Learning: There are 108 movements
in Yang-Style TCC, each of which is composed of several key
postures with distinctive names. In single movement learning,
the user practices either key postures or a single movement
in a continuous manner. After entering this mode, the user
first selects one movement by name to practice from the
movement selection menu. The name of the mode, movement,

Fig. 5. Hidden panel in learning module

and key posture are shown in the top-left corner of the FOV
in the HMD. Next, the user is surrounded by virtual coaches,
whose spatial layout was specified in the previous section. All
the coaches repeatedly demonstrate the movements that user
has selected, while the system first speaks the name of the
movement and then speaks every key posture as the coaches
demonstrate it. The user follows the instructions and imitates
the coaches’ posture. If the user feels difficult in continous
playing mode, he/she can enter PKP mode to practice a certain
key posture. In this mode, coaches demonstrate the same
movement but pause at each key posture for the user to learn
and observe. For instance, there are three key postures in Wave
hand like cloud (分勁雲手): Unfolding palm (撐手), Left wave
hand (左雲手), and Right wave hand (右雲手). If the user
practices this movement in PKP mode, the coaches pause at
Unfolding palm before the user switchs to the next key posture.

2) Sequential Movement Learning: Connection between
each movement is vital in TCC, and thus experienced TCC
practitioners prefer sequential movement. They are famil-
iar with all TCC movements and tend to practice different
movements continuously without interruptions. In sequential
movement learning, the user either starts from the first TCC
movement, i.e., Preparation (太極起式) or specifies any
desired movement to start with. As with the single movement
mode, the user is surrounded by virtual coaches who demon-
strate the selected movements sequentially once. During the
demonstration, the user can still switch to the next or previous
movement.

C. User Interaction

To enhance the user experience, we provide three interaction
methods: hidden panel, hot key, and voice command. In single
or sequential movement learning, there are several buttons in
the hidden panel, as shown in Fig. 5. These are invisible during
practice but can be revealed by an air tap, which is a HoloLens
gesture. The user can also control the system with the hot
key, which can be triggered by a HoloLens gesture or the
physical clicker. Generally speaking, the user single-clicks to
move to the next movement or key posture, double-clicks to
return to the parent node, and triple-clicks to move back to
the previous movement or key posture. The user can also read
out the command name to manipulate the system, for instance
saying stop to pause the demonstration or play to resume.



Fig. 6. Evalution module layout. (We support one or multiple cameras.)

IV. EVALUATION MODULE

In this section, we describe the evaluation module of the
proposed system, both hardware and software. Fig. 6 shows
the layout of the module: it consists of external cameras, a pair
of special shoes equipped with a digital compass and single-
board computers, and a remote server, as shown in Fig. 7.
Image and measurement data are sent to the server, where we
reconstruct the human pose and calculate the similarity to the
coach’s movement, which is taken as the ground truth for the
scores and review video.

A. Digital Compasses

We installed a 3-Axis Magnetic Sensor QMC5883L and a
Raspberry Pi single-board computer on a traditional kung-fu
shoe. The Raspberry Pi receives the yaw angle measurements
for both of the user’s feet θ̂LF and θ̂RF at 5 Hz from the
digital compasses and sends these data to the server wirelessly.
To eliminate orientation bias between the learning system
and the digital compass, we take the mean value of the yaw
angle measurements as the base number and subtract each
measurement from their mean to get the relative difference
θ̂′LF and θ̂′RF . We do the same with the ground-truth value
to get θ′LF and θ′RF .

B. Pose Estimation with External Cameras

In pose estimation, we reconstruct the human pose by
analyzing imagery from the external camera. If there are
multiple cameras, we select one optimal perspective and dis-
card the others. The image frames captured from the optimal
perspective are fed as input to reconstruct the human pose.
We estimate the 2D pose and use this to infer the 3D pose.
For 2D pose estimation, we use OpenPose [22], a well-known
bottom-up pose estimation method which detect joints, which
are then connected to form the skeleton of the human body.
First, it takes an input color image to estimate part confidence
maps and part affinity fields (PAFs). A part confidence map
describes the confidence of the locations of the human joint
positions, whereas PAFs describe the relationship between
each detected human joint. Then, OpenPose uses bipartite
matching to connect the parts (joints) to form the skeleton.
After acquiring the 2D pose, we follow Lifting from the
Deep [23] for 3D pose estimation: we feed the 2D human pose

Fig. 7. Hardware and communication (transmit via MQTT protocal)

into the pretrained probabilistic model to lift the 2D pose into
a 3D pose. Then we extract the elbow angles θ̂′LE , θ̂′RE and
knee angles θ̂′LK , θ̂′RK from the generated 3D pose.

C. Pose Evaluation

We align the measurement and ground-truth data via dy-
namic time warping (DTW) and measure the similarity be-
tween two sequences with the Gaussian function. The output
is a score along with a review video, as shown in Fig. 10.
We color correct, acceptable, and incorrect postures as green,
yellow, and red so that the user can use the color to determine
whether his/her posture is correct.

1) Dynamic Time Warping (DTW): Dynamic time warp-
ing is a fundamental algorithm for similarity measure-
ments between two unequal-length signals. Let G =
(g1, g2, . . . , gn) and U = (u1, u2, . . . , um) denote the dis-
crete time signal whose lengths are n and m respec-
tively. The objective is to find a warping path W =
{(pi, qi) | 1 ≤ i ≤ k, k = min(m,n)} such that the warping
cost D is optimized by dynamic programming:

D = min
W

k∑
i=1

‖G(pi)−U(qi)‖2 (1)

2) Similarity Measurement: Although the cumulative Eu-
clidean distance calculated in DTW can represent the similar-
ity between two sequences, it is not normalized. Hence, we
apply a Gaussian function-based similarity metric to compare
the aligned signal as

Si = a exp(−‖G(pi)−U(qi)‖2

2σ2
), (2)

where a is the normalization factor and σ is the Gaussian RMS
width, which represents the tolerance of error.

3) Grading Rubric: Our grading rubric has three criteria:
absolute elbow angles Selbow, absolute knee angles Sknee, and
relative foot angles Sfoot. For each criteria, the score is calcu-
lated by Eq. 2. Note that we calculate the left side and right
side separately. If the score of a certain criteria is less than
40, we color it red in the review video, implying the posture
is incorrect. If the score lies between 40 and 60, we color it
yellow, indicating acceptable posture. If the score is higher
than 60, we color it green, showing the posture is correct. The



(a) Poor performance (b) Good performance

Fig. 8. User interface of review system (green: correct; yellow: acceptable; red: incorrect)

total score, which represents the overall performance of the
user, is the weighted sum of each criteria:

Stotal =
∑

i ∈ {elbow, knee, foot}

wiSi (3)

where wi and Si denote the weight and score of each criteria.

V. LEARNING MODULE USER EXPERIENCE

A. Interaction Methodology

From the user’s perspective, voice commands are conve-
nient. Nevertheless, the built-in voice recognition system of
the HoloLens (1st gen) is not very robust. It tends to fail due
to environmental noise and user accents. Thus, the other two
interaction methods—the hidden panel and the hot key—are
indispensable. The hot key is triggered by physical clickers
or HoloLens gestures. The user can single-click, double-
click, or triple-click to manipulate the system. The hidden
panel, in turn, contains several function buttons and can be
revealed by an air tap. Each method has its advantages and
disadvantages. In this part, we describe a user study conducted
for comparison.

1) Experiment Procedure: Participants experimented with
the two interaction methods with the HoloLens (1st gen).
Before they started, we explained how the methods work. Then
they followed our instructions to try out the functions in the
learning module, after which they rated the operation methods
and the functions using 7-point Likert scales.

2) Participants: Thirty six participants, including 23 fe-
males and 13 males, age 19 to 32, mean age 20.69 (SD =
2.19), were recruited for the study. Most participants come
from Tai-Chi Chuan Beginning Class.

3) Result: Fig. 9(a) shows that the hidden panel was
judged significantly better than the hot key in terms of
Continuous/PKP(Pause-at-Key Posture) Playing Mode Switch
(hotkey: mean = 4.75, SD = 1.11; hidden panel: mean = 5.00,
SD = 1.39; one-tailed p = 0.40), Manipulation in PKP Mode
(hotkey: mean = 4.00, SD = 1.60; hidden panel: mean =
5.17, SD = 1.50; one-tailed p = 2.158E-3), and Manipulation
in Sequential Movement Learning (hotkey: mean = 3.89, SD
= 1.51; hidden panel: mean = 5.17, SD = 1.42; one-tailed
p = 4.31E-4). Participants commented that “triple-click is

TABLE I
SELECTED YANG-STYLE TCC MOVEMENTS

Movement Arm
movement

Body
rotation

Foot
movement

Wave hand like cloud X
Grasp bird’s tail X X
Right brush knee,

twist step X X X

extremely difficult to access” (eighteen users) and “it takes
times to memorize all hot key operation.” (nine users).

B. Overall Satisfaction

We also asked the participants about the overall user experi-
ence. “Usefulness of virtual coach (virtual coach)”, and three
modes “Continuous playing mode in Single Movement Learn-
ing (continuous)”, “PKP mode in Single Movement Learning
(PKP)”, and “Sequential Movement Learning (sequential)” are
evaluated. Most participants thought highly of the proposed
learning module, as shown in Fig. 9(b). Although most were
satisfied, some still suggested improvements: “it would be
better to allow users to modify the orientation of coach”
(eight users), “the buttons on hidden panel should be more
centralized.” (six users).

VI. EVALUATION MODULE USER EXPERIENCE

A. Utility of Evaluation Module

To verify the effectiveness of the proposed evaluation mod-
ule, we invited five advanced TCC students to participate in
user studies. Since it is unreasonable to ask TCC beginners
or people who do not practice TCC to evaluate the pose
estimation results, we could only depend on a TCC master
or an experienced TCC practitioner. We selected three rep-
resentative movements in Yang-Style TCC: Wave hand like
cloud (分勁雲手), Grasp bird’s tail (攬雀尾), and Right brush
knee, twist step (右摟膝拗步). The difference between these
movements is summarized in Table 1. These three movements
employ different motion styles and represent different levels
of difficulty, so we can evaluate the module’s pose estimation
and feet orientation estimation separately.



(a) Comparison between hot key and hidden panel for learning module (b) User preference for each components in learning module

Fig. 9. User experience on learning module (36 participants; all of them are TCC beginners)

(a) Comparison on grading rubrics (w/wo feet orientation) (b) Evaluation module user preference

Fig. 10. User experience on evaluation module (5 participants; all of them are experienced TCC practitioners)

1) Experiment Procedure: Before the experiment started,
to familiarize the participants with the equipment, they were
asked to wear the special shoes and HoloLens to practice
TCC several times. Afterwards, they were asked to practice
the selected TCC movements. During this practice, they were
to asked to perform the movement incorrectly to check whether
the evaluation module highlighted the erroneous pose.

2) Participants: Five male participants aged 24 to 26 with
a mean age of 24.6 (SD = 0.89) were recruited for the study.
All participants had experience learning TCC: one for 6 years,
three for 5 years, and one for 4 years.

3) Result: We compared the scores using only the cam-
era versus combining the camera and the digital compasses.
Fig. 10(a) shows that for movements without any feet move-
ment, the scores are higher with feet orientation. This results
from the total score is the weighted sum of three criteria. Users
can get nearly full scores of the relative foot angles Sfoot by
standing in place. However, for difficult movements with feet
movements, the scores dropped. This seems to indicates that
feet orientation is easily ignored when practicing strenuous
movements. Hence, our grading rubric reminds the user to
focus more on feet orientation.

B. User Preference

Next, participants were asked to use a 7-point Likert scale
to rate the operability of the practice review user interface

and to judge whether the evaluation module helped them
to modify their movements. Also, participants were asked
whether they would recommend TCC beginners to practice
TCC on their own with our system. The user preferences are
displayed in Fig. 10(b). Experienced TCC students agreed that
the Evaluation Module clearly represented coach movements,
that the practice review UI was easy to use, and that the
module correctly identified errors and correct poses. Also,
they believed that the proposed module would satisfy the
needs of TCC beginners when memorizing TCC movements.
One participant, however, commented that “This module did
not clearly explain the reasons for errors and did not give
directions on how to improve” (P4).

VII. CONCLUSION

We present an augmented Tai Chi Chuan practice tool with
the following contributions: a learning module that provides
labeled key postures and a user-friendly interaction method;
an evaluation module which helps users to review and correct
their movements; an probe into AR interaction methodology
from user study. Our system architecture can also be applied to
other sports that require close attention to posture. Despite that
most users were satisfied with the system, we will continue to
explore how to effecrtively guide the user to correct posture.
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