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Abstract. Visual simultaneous localization and mapping (SLAM) is
a common solution for camera ego-positioning. However, SLAM some-
times loses tracking, for instance due to fast camera motion or feature-
less or repetitive environments. To account for the limitations of visual
SLAM, we use sensor fusion method to fuse the visual positioning re-
sults with inertial measurement unit (IMU) data based on filter-based,
loosely-coupled sensor fusion methods, and further combines feature-
based SLAM with direct SLAM via proposed complementary fusion to
retain the advantages of both methods; i.e., we not only keep the accu-
rate positioning of feature-based SLAM but also account for its difficulty
with featureless scenes by direct SLAM. Experimental results show that
the proposed complementary method improves the positioning accuracy
of conventional vision-only SLAM and leads to more robust positioning
results.

Keywords: Camera ego-positioning · Sensor fusion.

1 Introduction

Ego-positioning is indispensable in many applications to enable the drone to
navigate autonomously in unseen or indoor environments. With the advance of
computer vision technology, visual ego-positioning is now one of the most appro-
priate solutions for drone navigation. This topic has been thoroughly studied and
a variety of solutions are now available: two well-known visual ego-positioning
categories are visual simultaneous localization and mapping (SLAM) and visual
odometry (VO).

In visual SLAM and visual odometry, methods which use monocular cameras
are called monocular visual SLAM and monocular visual odometry respectively.
Researchers have proposed a variety methods for monocular visual SLAM and
VO [10, 18, 2, 5, 3, 15, 6, 16, 1]. These can be further classified into feature-based
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methods and direct methods. The fundamental principle of feature-based meth-
ods is detecting feature points for each frame and matching them between con-
secutive frames. Direct methods in turn use the entire image information, and
find a suitable camera pose by minimizing the photometric error.

However, visual SLAM and VO both have drawbacks. First, when the camera
moves fast, these methods can lose tracking easily due to motion blur or excessive
parallax between consecutive frames. Second, for monocular methods, their map
scale differs from that in the real world. Considering these drawbacks, a well-
known solution is to fuse the visual ego-positioning result from the camera with
inertial data from the inertial measurement unit (IMU) via sensor fusion meth-
ods [14, 22, 12, 17, 20]. In this paper, we fuse visual ego-positioning results from
the camera with inertial data from the IMU via a filter-based, loosely-coupled
sensor fusion method [22].

Furthermore, feature-based methods and direct methods of visual SLAM and
VO have complementary advantages and disadvantages. The positioning accu-
racy of feature-based methods is higher than that of direct methods, but they
perform poorly in featureless scenarios, usually losing tracking in this case. In
contrast, although the positioning accuracy of direct methods is lower than that
of feature-based methods, they still work in such featureless scenarios. There-
fore, in this paper, we propose a complementary method to combine the ego-
positioning results of feature-based methods and direct methods to handle fea-
tureless scenarios. Experimental results show that the proposed complementary
method improves the positioning accuracy of conventional vision-only SLAM
and also leads to more robust positioning results.

The rest of this paper is organized as follows. We review related work in
Section 2 and present the sensor fusion method in Section 3. We present the
proposed complementary ego-positioning method in Section 4, and in Section 5
we evaluate the sensor fusion method as well as the proposed complementary
ego-positioning method. We conclude in Section 6.

2 Related Work

2.1 Visual Ego-Positioning

Visual ego-positioning has being well studied, two of mostly known categories of
visual ego-positioning methods are visual simultaneous localization and mapping
(SLAM), and visual odometry (VO). Researchers have proposed a variety meth-
ods of visual SLAM and VO these years [10, 18, 2, 5, 3, 15, 6, 16, 1]. ORB-SLAM
[15] is a representative and classic feature-based method which provides position-
ing results in real time. ORB-SLAM uses ORB features, which can be computed
and matched extremely quickly; the method is also invariant to scale, rotation,
and limited affine changes. Furthermore, ORB-SLAM has a good loop-closing
algorithm with which it optimizes the global map when closed loops are de-
tected, which can effectively reduce the cumulative error. Using the loop-closing
algorithm, ORB-SLAM is also able to quickly relocalize when it loses tracking.
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LSD-SLAM [2] is a classic direct SLAM method which directly operates on im-
age intensities for both tracking and mapping, instead of using feature points
to find correspondences. Semi-Direct Visual Odometry (SVO) [5] is a sparse-
direct method, which detects features on the consecutive frames and uses the
neighbor pixels of the detected feature to do patch matching for estimating the
camera pose. Direct Sparse Odometry (DSO) [1] is also a sparse-direct method.
It combines a fully direct probabilistic model (minimizing a photometric error)
with consistent, joint optimization of all model parameters, including geometry
represented as inverse depth in a reference frame and camera motion.

2.2 Sensor Fusion of Camera and IMU

Visual SLAM and VO have two drawbacks. First, when the camera moves
rapidly, the methods lose tracking easily due to motion blur or large parallax
between consecutive frames. Second, for monocular methods, the map scale is
different from that in the real world. Given these drawbacks, some researchers
have proposed sensor fusion methods, which estimate ego-position by fusing
visual sensors and inertial sensors. In general, these methods are forms of visual-
inertial odometry (VIO). VIO approaches can be divided into two categories:
filter-based VIO and optimization-based VIO.

Filter-based VIO [14, 22] uses a filter to fuse visual and inertial measurements.
Depending on the filter state vector, filter-based methods can be classified into
tightly-coupled methods and loosely-coupled methods. Tightly-coupled meth-
ods directly consider the camera pose or information on the image as part of
the filter state vector input, leading to high precision but with added computa-
tional cost [14]. Mourikis et al. [14] propose extended Kalman filter (EKF)-based
real-time fusion using monocular vision and IMU; this is termed multi-state con-
straint Kalman filter (MSCKF). Unlike conventional EKF-based methods which
put features on the image frames into the state vector, MSCKF puts camera
poses into the state vector to avoid the curse of dimensionality. Experimental
results show that MSCKF achieves high-precision pose estimation in real time.
Loosely-coupled methods, in contrast, process the visual and inertial measure-
ments separately to reduce computational cost. Because of this feature, loosely
coupled methods are typically suited for systems with very limited resources,
such as drones. Weiss et al. [22] propose a framework to enable autonomous
flights of micro aerial vehicles by treating visual ego-positioning as a black box.
This method is suitable for implementation on drones as it is computationally
efficient and can be easily used with different visual ego-positioning algorithms.

Optimization-based VIO [12, 17, 20], in turn, estimates camera pose using
an objective function to minimize the reprojection residuals and IMU residuals.
Leutenegger et al. [12] propose an optimization-based VIO framework called
open keyframe-based visual-inertial SLAM (OKVIS). This work applies the
keyframe concept to nonlinear optimization by marginalization. Qin et al. [20]
propose a nonlinear optimization-based state estimator with a loop-closing algo-
rithm, which reduces the cumulative error and thus increases positioning accu-
racy. Nisar et al. [19] proposed a method called visual inertial model-based odom-
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etry (VIMO), which extends VINS-Mono by adding thrust measurements and
dynamic residuals to the cost function to perform force estimation. They apply
the concept of motion constraint which combines quadrotors dynamics and exter-
nal forces. Their experiments on simulation shows 29% improvement on accuracy
without increasing the computational time. Furthermore, in optimization-based
VIO, pre-integration [4] is a significant method, especially for drones, which is
applied to process IMU data and can reduce computational costs.

Because filter-based, loosely-coupled sensor fusion methods are computation-
ally efficient and can be easily used with different visual ego-positioning algo-
rithms, in this paper, we use filter-based, loosely-coupled methods as our sensor
fusion methods.

2.3 Complementary Ego-Positioning

Another way to overcome the drawbacks of visual SLAM and VO is to use com-
plementary methods, i.e., combine feature-based and direct methods. Feature-
based methods and direct methods each have their pros and cons. Feature-based
methods enable fast tracking but do poorly in featureless scenarios. Direct meth-
ods estimate robust pose over time but come with heavy CPU demands. Com-
plementary methods take advantage of both methods continually for robust re-
sults. Krombach et al. [11] propose a complementary ego-positioning method
called the hybrid approach. Their approach uses direct method LSD-SLAM as a
keyframe register for better depth estimation values. Moreover, LIBVISO2 [9], a
feature-based method, keeps tracking pose due to its fast-tracking capabilities.
Their experimental results show that the approach accumulates less drift than
the direct method or the feature-based method.

3 Sensor Fusion of Camera and IMU

For fast computation and easily adoption of different visual ego-positioning al-
gorithms, which is described in Section 2.2, we use the filtered-based, loosely-
coupled VIO method. Since it requires visual measurements and IMU measure-
ments to be processed separately, we divide the sensor fusion framework into
a visual positioning module and a sensor fusion module. First, the visual posi-
tioning module estimates the initial camera pose, after which the sensor fusion
module fuses the initial camera pose and IMU measurements to yield a refined
camera pose and the scale of the real world. Fig. 1 shows the sensor fusion
framework used in this work.

3.1 Method

We use the filtered-based, loosely-coupled VIO method proposed by Weiss et
al. [22], which uses an EKF framework, and estimates not only the camera pose
and velocity but also the scale of the real world. The filter consists of a prediction
and an update step. Below we describe in greater detail the structure of the EKF
framework.
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Fig. 1. Loosely-coupled sensor fusion framework

State Vector The state vector X of method in [22] contains eight components.
The first to the third components are the IMU position piw, the velocity viw, and
the rotation qiw from the inertial world coordinate system to the IMU coordinate
system. The IMU rotation is expressed in quaternion form. The fourth to the
sixth components are the gyroscope bias bω, the accelerometer bias bα, and a
measurement scale factor λ. The seventh and the eighth components are the
calibration components, which are the distance pci between IMU and camera
and the rotation qci from the IMU coordinate system to the camera coordinate
system:

X =
[
piw, v

i
w, q

i
w, bω, bα, λ, p

c
i , q

c
i

]
. (1)

Note that this method assumes the scale factor λ and the calibration components
pci and qci remain constant over time, that is,

λ̇ = 0, ṗci = 0, q̇ci = 0. (2)

Prediction Step The IMU data is used in the prediction step for state prop-
agation as the motion model in a basic Kalman filter. The measured angular
velocity ω̂ and acceleration â data from the IMU are used to predict the system
state by integration and double integration. The following differential equations
govern the state:

ṗiw = viw, (3)

v̇iw = Rw
i (â− bα − nα)− g, (4)

q̇iw =
1

2
Ω (ω̂ − bω − nω)qiw, (5)

where bα and bω are the sensor bias of the accelerometer and gyroscope respec-
tively; nα and nω are the sensor noise of accelerometer and gyroscope respec-
tively, which are modeled as white noise; g is the gravity vector in the world
coordinate system; Ω() is the quaternion multiplication matrix of angular ve-
locity; and Rw

i is the rotation matrix from the IMU coordinate system to the
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world coordinate system. Note that this method models bias as a random walk,
whose derivative is white noise:

ḃα = nbα, ḃω = nbω. (6)

Update Step The visual positioning result is used in the update step as the
measurement in a basic Kalman Filter. For the position measurement pcw ob-
tained from the visual positioning algorithm, we have the following measurement
model:

pcw = λ(Rw
i p

c
i + piw) + np, (7)

where np is the measurement noise modeled as white noise. The rotation mea-
surement qcw obtained from the visual positioning algorithm is modeled as

qcw = qci ⊗ qiw, (8)

where ⊗ is the quaternion multiplication operator. Given the measurement
model, the state estimation can be updated according to the Kalman filter pro-
cedure.

3.2 Camera-IMU System Calibration

The camera-IMU sensor fusion requires accurate calibration parameters of the
camera-IMU system to maintain high performance. These parameters can be
divided into camera-intrinsic parameters, camera-IMU-extrinsic parameters, and
IMU noise parameters. Camera-intrinsic parameters are critical for the visual
positioning module to achieve highly accurate camera-pose estimation. In this
work, we use a well-known camera calibration method from Zhang [24]. Camera-
IMU-extrinsic parameters are used to update the sensor fusion input state vector.
To estimate these, we use the Kalibr toolbox [7, 8, 13], which is a widely used
camera-IMU calibration toolbox that provides highly accurate calibration. IMU
noise parameters can inform the sensor fusion system about the uncertainty of
the IMU, and are important when the sensor fusion system is updating. Allan
standard deviation [21] is a common method to estimate the noise parameters
of the sensor.

4 Complementary Ego-Positioning

The framework of our complementary ego-positioning system is shown in Fig. 2.
The framework has four main modules: a feature-based visual positioning mod-
ule, a direct visual positioning module, a sensor fusion module, and a comple-
mentary fusion module. Because the feature-based method is faster and more
accurate than the direct method, we use the feature-based visual positioning
module as the main module and direct visual positioning module as the com-
plementary module. First, the image sequence is fed into the main module and
the complementary module to yield the camera pose. The results from the main
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Fig. 2. Framework of proposed complementary ego-positioning system

module and complementary module are then fed into the sensor fusion mod-
ule respectively, and the sensor fusion module fuses the results from these two
modules with the IMU measurements to yield the main VIO result and comple-
mentary VIO result respectively. The method used in the sensor fusion module
is described in detail in Section 3. Finally, as the feature-based method usually
performs poorly or loses tracking in featureless scenarios, the complementary fu-
sion module fuses the main and complementary VIO results to handle featureless
scenarios, yielding a robust result as the final output.

4.1 3D Point Registration

To fuse the main and the complementary VIO results, they must be aligned.
Although the estimated camera poses from the main module and the comple-
mentary module are unscaled, the scale can be acquired from the sensor fusion
module because it can fuse the estimated camera poses from the main module
and the complementary module with the IMU measurements to get the refined
camera poses and the scale of the real world. Because the scale is estimated by
the sensor fusion module, we can align the main and complementary VIO results
as following. We have pm, which is one of the points in the main-VIO-result point
set, Pm, and pc, which is one of the points in the complementary-VIO-result
point set, Pc. Both Pm and Pc are finite-size point sets in a three-dimensional
real vector space. The transformation from pc to pm can be formulated as

pm = Rpc + t, (9)

where R is a 3 × 3 rotation matrix and t is a 3 × 1 translation vector. We can
solve the R and t by minimizing the error of the objective function:

argmin
R, t

∑
‖pm −Rpc − t‖2 . (10)
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After the transformation parameters R and t are estimated, we align the com-
plementary VIO result to the main VIO result.

4.2 Complementary Fusion

In our framework, the main VIO and the complementary VIO execute in par-
allel. They continually output the scaled and the refined camera poses. At the
same time, the complementary fusion module uses the underperformance detec-
tion algorithm to detect when the main module is underperforming (drift or lose
tracking) and then fuses the main VIO result and the complementary VIO re-
sult. When the main module is working as expected, the complementary fusion
module uses the main VIO result. When it underperforms, the complementary
fusion module replaces the main VIO result with the complementary VIO re-
sult after aligning the complementary VIO result to the main VIO result. The
alignment algorithm is presented in Section 4.1.

Fig. 3. Transformation relationships of coordinate systems used in sensor fusion. The
red part represents the transformation relationship of the visual positioning coordinate
system and camera coordinate system. The purple part represents the transformation
relationship of the camera coordinate system and IMU coordinate system. The green
part represents the transformation relationship of the IMU coordinate system and
inertial world coordinate system.

The underperformance detection algorithm previously mentioned is from [23].
It detects behavior such as pose estimation drift or tracking loss, which often
result in strange camera rotation estimations. In our framework, the camera
rotation is estimated by two different modules: the visual positioning module
and the sensor fusion module. Fig. 3 shows the transformation relationships of
the coordinate systems used in the sensor fusion. Based on the relationships
shown in Fig. 3, we estimate the rotation from the visual positioning coordinate
system to the inertial world coordinate system, qwv , for each EKF update step k
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by the following equation:

qwv (k) = q̂i
−1

w (k)⊗ q̂c
−1

i (k)⊗ q̂cv(k), (11)

where q̂cv(k) is the rotation from the visual positioning coordinate system to the
camera coordinate system, q̂ci (k) is the rotation from the IMU coordinate system
to the camera coordinate system, and q̂iw(k) is the the rotation from the inertial
world coordinate system to the IMU coordinate system.

Ideally, the camera rotation estimated by the visual positioning, q̂cv(k), and
the sensor fusion, q̂iw(k), is equal. However, if the visual positioning method un-
derperforms, there is a considerable difference between q̂cv(k) and q̂iw(k), causing
the variation of qwv (k) to be high because q̂ci (k) is from the calibration and is
constant in the sensor fusion framework. As the variation of qwv is slow com-
pared to the EKF update frequency, underperformance in the main module can
be detected when there is an abrupt jump in the smooth qwv estimation, q̂wv :

q̂wv (k) = Median [qwv (i)] , i = k −N → k, (12)

where Median[] is the median filter and N is the window size. When the EKF
update step comes to k+1, we compare the qwv (k+1) with the past M estimates
q̂wv . If qwv (k + 1) lies outside the 3σ error bounds of the q̂wv , underperformance
has occurred.

5 Experiments

In this section, we evaluate the proposed complementary ego-positioning system
in two scenarios: a normal scenario and a featureless scenario. The feature-based
visual positioning method we used is ORB-SLAM [15], and the direct visual
positioning method we used is LSD-SLAM [2]. Both methods are the classic and
representative visual SLAM methods. The experimental setup is shown in Fig. 4.
We built a camera-IMU system to record data for the experiment consisting of
an NGIMU and a GoPro Hero4 camera, which are mounted on a box. The
camera-IMU system is shown in Fig. 4(a). The sampling rate of the NGIMU
was 100 Hz, and the camera was run at 30 fps. The ground truth trajectory of
the camera-IMU system was taken by Vicon.

Normal Scenario In the normal scenario, we recorded data in a regular scene
full of features, as shown in Fig. 4(b). The results of this scenario on the X-
Y trajectory is shown in Fig. 5. The statistics of the positioning errors and
scale errors are shown in Table 1. Note that all of the trajectories are aligned
to the ground truth trajectories. The alignment includes scaling, rotation, and
translation. The mean and standard deviation of the positioning errors in Table 1
are estimated on the aligned trajectories. The scale errors in Table 1 are the scale
ratio of the positioning algorithm trajectory by the ground truth trajectory.
The results show that both ORB-SLAM and LSD-SLAM have good positioning
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accuracy. The positioning errors of ORB-SLAM and LSD-SLAM can be reduced
by fusing with the IMU. Sensor fusion also recovers the scale of the real world.
After fusing with IMU, the trajectories of ORB-SLAM and LSD SLAM become
smooth and close to the ground truth trajectory. The positioning accuracy of
ORB-SLAM and ORB-SLAM + IMU is higher than the positioning accuracy of
LSD-SLAM and LSD-SLAM + IMU. With the complementary fusion method
of the proposed complementary ego-positioning system, because the main VIO
does not underperform, the final result is equal to the main VIO (ORB-SLAM
+ IMU) result.

(a)

(b) (c)

Fig. 4. Experimental setup: (a) Camera-IMU system, (b) normal scenario, and (c)
featureless scenario.

Table 1. Positioning errors and scale errors in normal scenario

Error mean
(mm)

Error stdev.
(mm)

Scale error

ORB-SLAM 53.5 19.2 3.13
ORB-SLAM + IMU 49.9 17.4 0.95

LSD-SLAM 58.9 30.9 2.21
LSD-SLAM + IMU 50.9 35.3 0.95

Complementary Method 49.9 17.4 0.95
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Fig. 5. X-Y trajectories of different positioning methods and plot of qw
v in normal

scenario

Featureless Scenario In the featureless scenario, shown in Fig. 4(c), we re-
moved the painting in the experiment scene of the normal scenario to simulate
a featureless environment with a pure white wall. The results of this scenario
on the X-Y trajectory are shown in Fig. 6. ORB-SLAM loses tracking when it
comes to the white wall. With the help of fusing with IMU, ORB-SLAM does
not lose tracking when it comes to the white wall. However, the trajectory of the
white wall part is far from the ground truth trajectory. In contrast, LSD-SLAM
and LSD + IMU is robust in the whole trajectory even though their trajectories
are not very close to the ground truth trajectory. The proposed complementary
ego-positioning system detects the tracking loss when it comes to the white wall
and uses the complementary VIO (LSD + IMU) result to replace the main VIO
(ORB-SLAM + IMU) result. The statistics of positioning errors and scale errors
are shown in Table 2, according to which the positioning error of the proposed
complementary ego-positioning system is the lowest.
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Table 2. Positioning errors and scale errors in featureless scenario

Error mean
(mm)

Error stdev.
(mm)

Scale error

ORB-SLAM N/A N/A N/A
ORB-SLAM + IMU 344.4 478.7 1.01

LSD-SLAM 131.9 57.2 2.37
LSD-SLAM + IMU 125.0 52.8 1.02

Complementary Method 103.0 51.3 0.95

Fig. 6. X-Y trajectories of different positioning methods and plot of qw
v in featureless

scenario

6 Conclusion

In this paper, we propose a novel camera localization method by using sensor
fusion and complementary ego-positioning. First, we use the filter-based, loosely-
coupled sensor fusion to fuse the visual-positioning result with IMU measure-
ments to yield a refined pose as well as the scale of the real world. Furthermore,
we combine the ego-positioning results of feature-based SLAM and direct SLAM.
Two classic and representative visual SLAM methods—ORB-SLAM and LSD-
SLAM—are used in this work. ORB-SLAM is a feature-based method which
is robust and accurate in normal scenes with a sufficient number of features
but does poorly in featureless scenarios. LSD-SLAM is a direct method, which
is less sensitive to featureless scenarios, but is less accurate than ORB-SLAM.
As the two methods are complementary, the combination of ORB-SLAM and
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LSD-SLAM produces more robust and accurate results. The experimental results
show that in normal scenarios, sensor fusion improves the visual positioning re-
sult and estimates the scale of the real world precisely. In featureless scenarios,
the direct method takes over and maintains a robust result.
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2. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular
SLAM. In: European Conference on Computer Vision. pp. 834–849. Springer (2014)

3. Engel, J., Stückler, J., Cremers, D.: Large-scale direct slam with stereo cameras.
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 1935–1942. IEEE (2015)

4. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: On-manifold preintegration
for real-time visual–inertial odometry. IEEE Transactions on Robotics 33(1), 1–21
(2016)

5. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual
odometry. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). pp. 15–22. IEEE (2014)

6. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: Svo: Semidi-
rect visual odometry for monocular and multicamera systems. IEEE Transactions
on Robotics 33(2), 249–265 (2016)

7. Furgale, P., Barfoot, T.D., Sibley, G.: Continuous-time batch estimation using
temporal basis functions. In: 2012 IEEE International Conference on Robotics and
Automation. pp. 2088–2095. IEEE (2012)

8. Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibration for
multi-sensor systems. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. pp. 1280–1286. IEEE (2013)

9. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: Dense 3D reconstruction in real-time.
In: Intelligent Vehicles Symposium (IV) (2011)

10. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces.
In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented
Reality. pp. 225–234. IEEE (2007)

11. Krombach, N., Droeschel, D., Behnke, S.: Combining feature-based and direct
methods for semi-dense real-time stereo visual odometry. In: International Con-
ference on Intelligent Autonomous Systems. pp. 855–868. Springer (2016)

12. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based
visual–inertial odometry using nonlinear optimization. The International Journal
of Robotics Research 34(3), 314–334 (2015)

13. Maye, J., Furgale, P., Siegwart, R.: Self-supervised calibration for robotic systems.
In: 2013 IEEE Intelligent Vehicles Symposium (IV). pp. 473–480. IEEE (2013)



14 P.-Y. Kao et al.

14. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-
aided inertial navigation. In: 2007 IEEE International Conference on Robotics and
Automation. pp. 3565–3572. IEEE (2007)

15. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accu-
rate monocular SLAM system. IEEE Transactions on Robotics 31(5), 1147–1163
(2015)

16. Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras. IEEE Transactions on Robotics 33(5), 1255–1262
(2017)

17. Mur-Artal, R., Tardós, J.D.: Visual-inertial monocular SLAM with map reuse.
IEEE Robotics and Automation Letters 2(2), 796–803 (2017)

18. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and map-
ping in real-time. In: 2011 International Conference on Computer Vision. pp. 2320–
2327 (Nov 2011). https://doi.org/10.1109/ICCV.2011.6126513

19. Nisar, B., Foehn, P., Falanga, D., Scaramuzza, D.: Vimo: Simultaneous visual iner-
tial model-based odometry and force estimation. IEEE Robotics and Automation
Letters 4(3), 2785–2792 (2019)

20. Qin, T., Li, P., Shen, S.: VINS-Mono: A robust and versatile monocular visual-
inertial state estimator. IEEE Transactions on Robotics 34(4), 1004–1020 (2018)

21. Vukmirica, V., Trajkovski, I., Asanovic, N.: Two methods for the determination of
inertial sensor parameters. methods 3(1) (2018)

22. Weiss, S., Achtelik, M.W., Chli, M., Siegwart, R.: Versatile distributed pose esti-
mation and sensor self-calibration for an autonomous MAV. In: 2012 IEEE Inter-
national Conference on Robotics and Automation. pp. 31–38. IEEE (2012)

23. Weiss, S., Siegwart, R.: Real-time metric state estimation for modular vision-
inertial systems. In: 2011 IEEE International Conference on Robotics and Au-
tomation. pp. 4531–4537. IEEE (2011)

24. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)


